Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.906
Filtrar
1.
Talanta ; 274: 125920, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38574532

RESUMO

Herby, the interaction of metallothioneins with commonly used Pt-based anticancer drugs - cisplatin, carboplatin, and oxaliplatin - was investigated using the combined power of elemental (i.e. LA-ICP-MS, CE-ICP-MS) and molecular (i.e. MALDI-TOF-MS) analytical techniques providing not only required information about the interaction, but also the benefit of low sample consumption. The amount of Cd and Pt incorporated within the protein was determined for protein monomers and dimer/oligomers formed by non-oxidative dimerization. Moreover, fluorescence spectrometry using Zn2+-selective fluorescent indicator - FluoZin3 - was employed to monitor the ability of Pt drugs to release natively occurring Zn from the protein molecule. The investigation was carried out using two protein isoforms (i.e. MT2, MT3), and significant differences in behaviour of these two isoforms were observed. The main attention was paid to elucidating whether the protein dimerization/oligomerization may be the reason for the potential failure of the anticancer therapy based on these drugs. Based on the results, it was demonstrated that the interaction of MT2 (both monomers and dimers) interacted with Pt drugs significantly less compared to MT3 (both monomers and dimers). Also, a significant difference between monomeric and dimeric forms (both MT2 and MT3) was not observed. This may suggest that dimer formation is not the key factor leading to the inactivation of Pt drugs.

2.
Nano Lett ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598498

RESUMO

Metal ions play a dual role in biological systems. Although they actively participate in vital life processes, they may contribute to protein aggregation and misfolding and thus contribute to development of diseases and other pathologies. In nanofabrication, metal ions mediate the formation of nanostructures with diverse properties. Here, we investigated the self-assembly of α-lactalbumin into nanotubes induced by coordination with metal ions, screened among the series Mn2+, Co2+, Ni2+, Zn2+, Cd2+, and Au3+. Our results revealed that the affinity of metal ions toward hydrolyzed α-lactalbumin peptides not only impacts the kinetics of nanotube formation but also influences their length and rigidity. These findings expand our understanding of supramolecular assembly processes in protein-based materials and pave the way for designing novel materials such as metallogels in biochip and biosensor applications.

3.
Biomed Pharmacother ; 174: 116574, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593706

RESUMO

Gastrointestinal (GI) cancer is one of the most severe types of cancer, with a significant impact on human health worldwide. Due to the urgent demand for more effective therapeutic strategies against GI cancers, novel research on metal ions for treating GI cancers has attracted increasing attention. Currently, with accumulating research on the relationship between metal ions and cancer therapy, several metal ions have been discovered to induce cell death. In particular, the three novel modes of cell death, including ferroptosis, cuproptosis, and calcicoptosis, have become focal points of research in the field of cancer. Meanwhile, other metal ions have also been found to trigger cell death through various mechanisms. Accordingly, this review focuses on the mechanisms of metal ion-induced cell death in GI cancers, hoping to provide theoretical support for further GI cancer therapies.

4.
Chemistry ; : e202400897, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597591

RESUMO

In this work, we present the solid-state structures of solvent-free Ga[pf] and In[pf] salts ([pf]- = [Al(ORF)4]-; RF = C(CF3)3), which are very rare examples of salts with truly 'naked' metal cations. Both salts may serve as starting materials for subvalent gallium and indium chemistry with very weakly coordinating ligands providing the freedom of choice for solvents and ligands for the future. On the other hand, we report and rationalize the formation and isolation of [M(OEt2)2][pf] and [M(MeCN)2][pf] (M = Ga, In), underlining the surprising stability of these subvalent group 13 M+ ions against disproportionation. Unexpectedly, tricoordinate and carbene analogous [Ga(L)2]+ ions with the [pf]- counterion are stable in L = acetonitrile and diethyl ether at room temperature, opening up possible applications for example in organic synthesis and catalysis.

5.
ACS Sens ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587931

RESUMO

Genetically encoded fluorescent metal ion sensors are powerful tools for elucidating metal dynamics in living systems. Over the last 25 years since the first examples of genetically encoded fluorescent protein-based calcium indicators, this toolbox of probes has expanded to include other essential and non-essential metal ions. Collectively, these tools have illuminated fundamental aspects of metal homeostasis and trafficking that are crucial to fields ranging from neurobiology to human nutrition. Despite these advances, much of the application of metal ion sensors remains limited to mammalian cells and tissues and a limited number of essential metals. Applications beyond mammalian systems and in vivo applications in living organisms have primarily used genetically encoded calcium ion sensors. The aim of this Perspective is to provide, with the support of historical and recent literature, an updated and critical view of the design and use of fluorescent protein-based sensors for detecting essential metal ions in various organisms. We highlight the historical progress and achievements with calcium sensors and discuss more recent advances and opportunities for the detection of other essential metal ions. We also discuss outstanding challenges in the field and directions for future studies, including detecting a wider variety of metal ions, developing and implementing a broader spectral range of sensors for multiplexing experiments, and applying sensors to a wider range of single- and multi-species biological systems.

6.
Chem Asian J ; : e202400258, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629210

RESUMO

Chemosensing, an interdisciplinary scientific domain, plays a pivotal role ranging from environmental monitoring to healthcare diagnostics and (inter)national security. Metal-organic gels (MOGs) are recognized for their stability, selectivity, and responsiveness, making them valuable for chemosensing applications. Researchers have explored the development of MOGs based on different metal ions and ligands, allowing for tailored properties and sensitivities, and have even demonstrated their applications as portable sensors such as paper-based test strips for practical use. Herein, several studies related to MOGs development and their applications in the chemosensing field via UV-visible or luminance along with electrochemical based are presented. These papers explored MOGs as versatile materials with their use in sensing bio or environmental analytes. This review provides a foundational understanding of key concepts, methodologies, and recent advancements in this field, fostering the scientific community.

7.
Mikrochim Acta ; 191(5): 254, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38594554

RESUMO

A fluorescent multichannel sensor array has been established based on three carbon dots derived from Tibetan medicine waste for rapid quantification and discrimination of six heavy metal ions. Due to the chelation between metal ions and carbon dots (CDs), this fluorescence "turn off" mode sensing array can quantify six metal ions as low as "µM" level. Moreover, the six heavy metal ions display varying quenching effects on these three CDs owing to diverse chelating abilities between each other, producing differential fluorescent signals for three sensing channels, which can be plotted as specific fingerprints and converted into intuitive identification profiles via principal component analysis (PCA) and hierarchical cluster analysis (HCA) technologies to accurately distinguish Cu2+, Fe3+, Mn2+, Ag+, Ce4+, and Ni2+ with the minimum differentiated concentration of 5 µM. Valuably, this sensing array unveils good sensitivity, exceptional selectivity, ideal stability, and excellent anti-interference ability for both mixed standards and actual samples. Our contribution provides a novel approach for simultaneous determination of multiple heavy metal ions in environmental samples, and it will inspire the development of other advanced optical sensing array for simultaneous quantification and discrimination of multiple targets.

8.
Artigo em Inglês | MEDLINE | ID: mdl-38573335

RESUMO

The efficacy of nanoparticles (NPs) in healthcare applications hinges on their biocidal activity and biocompatibility. This research is dedicated to green-synthesized NPs with potent biocidal properties, aiming for high inhibition rates in bacterial infections and offering a multifunctional application, including potential use in anticancer therapy, in comparison to traditional antibiotics. The present study focuses on synthesis of zinc oxide (ZnO) nanoparticles (NPs), including iron-doped ZnO (GZF) and cobalt-doped ZnO (GZC), using the green co-precipitation method involving Psidium guajava (P. guajava) leaf extract. The physicochemical properties of the synthesized NPs were analyzed using various characterization techniques. The antibacterial and anticancer activity depends on the generation of reactive oxygen species (ROS), particle size, surface area, oxygen vacancy, Zn2+ release, and diffusion ability. The antibacterial activity of the synthesized NPs was tested against various Gram-positive (Streptococcus pneumoniae (S. pneumoniae), Bacillus subtilis (B. subtilis) and Gram-negative (Klebsiella pneumoniae (K. pneumoniae), and Pseudomonas aeruginosa (P. aeruginosa) bacterial strains. The zone of inhibition showed higher activity of GZC (18-20 mm) compared to GZF (16-19 mm) and GZO (11-15 mm) NPs. Moreover, anticancer studies against blood cancer cell line (MOLT-4) showed half-maximal inhibitory concentration of 11.3 µg/mL for GZC compared to GZF and GZO NPs with 12.1 µg/mL and 12.5 µg/mL, respectively. Cytotoxicity assessments carried out on the fibroblast L929 cell line indicated that GZO, GZF, and GZC NPs demonstrated cell viabilities of 85.43%, 86.66%, and 88.14%, respectively. Thus, green-synthesized GZC NPs hold promise as multifunctional agents in the biomedical sector.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38573576

RESUMO

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.

10.
Sci Total Environ ; 928: 172422, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614329

RESUMO

The oily wastewater and heavy metal ions have been increasingly discharged into water environment, posting a serious threat to ecosystems and human health. However, it remains challenging to use single separation technology to effectively remove oil and heavy metal ions in oil-water mixtures simultaneously. Herein, novel hydrophobic/hydrophilic composites (HHC) were successfully prepared by using A4 paper-derived hydrophilic cellulose as the modified matrix, modifying the polydopamine layer and in-situ growth nanoscale zero-valent iron as active adsorption materials, combined with oleic acid-modified hydrophobic magnetic hollow carbon microspheres, which were used to efficiently and rapidly adsorb heavy metals and oil in oil-water mixtures. Under the optimal adsorption conditions, the adsorption amounts of As(III), As(V), Pb(II) and Cu(II) were 289.6 mg/g, 341.9 mg/g, 241.2 mg/g and 277.5 mg/g, respectively, and the mass transfer rate of HHC to the target ions is fast. The HHC have efficient separation performance for layered oil-water mixtures and emulsified oil-water mixtures, with separation efficiency of 97 % and 92 %. At the same time, due to the abundant adsorption sites, the HHC also exhibit splendid regeneration performance for the four ions after multiple adsorption utilization. Our work designed a approach to achieving promising oil and heavy metal adsorbents with higher adsorption capacity and better regenerative properties.

11.
ACS Appl Bio Mater ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38635922

RESUMO

The structural integrity, assembly yield, and biostability of DNA nanostructures are influenced by the metal ions used to construct them. Although high (>10 mM) concentrations of divalent ions are often preferred for assembling DNA nanostructures, the range of ion concentrations and the composition of the assembly products vary for different assembly conditions. Here, we examined the unique ability of Ba2+ to retard double crossover DNA motifs by forming a low mobility species, whose mobility on the gel is determined by the concentration ratio of DNA and Ba2+. The formation of this electrophoretically retarded species is promoted by divalent ions such as Mg2+, Ca2+, and Sr2+ when combined with Ba2+ but not on their own, while monovalent ions such as Na+, K+, and Li+ do not have any effect on this phenomenon. Our results highlight the complex interplay between the metal ions and DNA self-assembly and could inform the design of DNA nanostructures for applications that expose them to multiple ions at high concentrations.

12.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124288, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38636427

RESUMO

Realizing the accurate recognition and quantification of heavy metal ions is pivotal but challenging in the environmental, biological, and physiological science fields. In this work, orange fluorescence emitting quantum dots (OQDs) have been facilely synthesized by one-step method. The participation of silver ion (Ag+) can evoke the unique aggregation-induced emission (AIE) of OQDs, resulting in prominent fluorescence enhancement, which is scarcely reported previously. Moreover, the Ag+-triggered turn-on fluorescence can be continuously shut down by mercury ion (Hg2+). This intriguing sequential fluorescence variation exhibits great sensing potency for discrimination and quantification of Ag+ and Hg2+. Meanwhile, our OQDs also exhibit good selectivity, sensitivity, and rapid response toward Ag+ and Hg2+ detection. Due to their high performance, OQDs have been applied to the determination of Ag+ and Hg2+ levels in daily necessities and water samples with satisfactory results. Moreover, a portable smartphone-assisted sensing platform based on chromatic change has been constructed, facilitating the real-time and naked-eye visualization in the resource-confined scene. We anticipate that the discovery of these OQDs would be advantageous for exploring novel QDs materials for fluorescence detection.

13.
Int J Biol Macromol ; 267(Pt 2): 131416, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38582486

RESUMO

Heavy metal ions have extremely high toxicity. As the top of food chain, human beings certainly will accumulate them by ingesting food and participating other activities, which eventually result in the damage to our health. Therefore, it is very meaningful and necessary to design a simple, portable, stable and efficient material for heavy metal ions detection. Based on the spirolactam Rhodamine 6G (SRh6G) fluorescent probe, we prepared two types of nanocomposite materials (membrane and aerogel) by vacuum filtration and freeze-drying methods with lignocellulose nanofiber (CNF) as a carrier, polyvinyl alcohol (PVA) and glutaraldehyde (GA) as the cross-linkers. Then the microstructure, chemical composition, wetting property, fluorescence intensity and selectivity of as-prepared SRh6G/PVA/CNF would be characterized and analyzed. Results showed that SRh6G/PVA/CNF nanocomposites would turn red in color under strong acidic environment and produced orange fluorescence under ultraviolet light. Besides, they were also to detect Al3+, Cu2+, Hg2+, Fe3+ and Ag+ through color and fluorescence variations. We had further tested its sensitivity, selectivity, adsorption, fluorescence limits of detection (LOD) to Fe3+ and Cu2+. The test towards real water samples (hospital wastewater, Songhua River and tap water) proved that SRh6G/PVA/CNF nanocomposites could detect the polluted water with low concentrations of Fe3+ and Cu2+. In addition, SRh6G/PVA/CNF nanocomposites have excellent mechanical property, repeatability, superhydrophilicity and underwater superoleophobicity, which may offer a theoretical reference for the assembly strategy and detection application of cellulose-based fluorescent probe.

14.
Cureus ; 16(3): e56595, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38646368

RESUMO

Background When metals used in orthodontic materials are exposed to the oral environment, teeth, and gingivae over an extended period of time, they may gradually deteriorate. As a result, the patient is exposed to higher concentrations of metals and metal ions than what they would be exposed to through food and other sources. The goal of the current in vitro experiment was to evaluate and contrast the metal ion release from orthodontic archwires made of titanium-molybdenum alloy (TMA) and nickel-titanium (NiTi). Methods For 90 days, 20 orthodontic archwires in each group were immersed in 50 milliliters of simulated saliva using different containers. Atomic Absorption Spectrometry (AAS) (Shimadzu Corporation, Kyoto, Japan) was used to assess and compare metal ion emission. The unit of measurement is parts per million (PPM). Results The findings indicated that the discharge of nickel metal from the NiTi archwire (Group A) was much higher than that from the TMA archwire (Group B), with a statistical significance level of p < 0.001. It was discovered that Group B's release of titanium was statistically significantly (p < 0.05) higher than Group A's titanium release, which did not include the release of any other metals. Conclusion The study findings indicated that the amounts of metal ions released from the orthodontic archwires made of titanium molybdenum and nickel-titanium alloy were within safety limits.

15.
J Funct Morphol Kinesiol ; 9(2)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38651421

RESUMO

Total hip arthroplasty is indubitably one of the most performed operations worldwide. On the other hand, especially in the western world, the average age that women get pregnant has raised confoundedly. Consequently, a steadily increasing number of women become pregnant after they had hip arthroplasty surgery, with copious potential implications. The amount of knowledge on this particular field is considered inadequate in the existing literature. This paper aims to augment clinicians understanding surrounding this topic. A systematic literature review was conducted in accordance with the PRISMA guidelines. Papers from various computerized databases were scrutinized. Article selection was carried out by three authors independently employing specific pre-determined inclusion and exclusion criteria, while disagreements were elucidated with the contribution of other authors. A patently limited number of research articles were detected from our rigorous literature review, with only 12 papers meeting the inclusion criteria. The vast majority of studies were small-scale and examined confined population groups. Most studies had been performed in Finland, utilizing data from nationwide registries. Women with previous history of total hip arthroplasty feature increased rates of c-section delivery, although vaginal labor can be attempted with certain precautions. Hip implants' survival does not appear to be affected from gestation, which is predominately well-tolerated from these women. Metal ion circulation in mothers' blood has not been proven to trigger substantial complications concerning either mothers or offspring. It can be considered safe for women with such medical history to get pregnant; however, further multinational studies and pertinent research on this field are vital to attain more solid inferences.

16.
Food Chem ; 448: 139210, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569408

RESUMO

The detection of heavy metals in tea infusions is important because of the potential health risks associated with their consumption. Existing highly sensitive detection methods pose challenges because they are complicated and time-consuming. In this study, we developed an innovative and simple method using Ag nanoparticles-modified resin (AgNPs-MR) for pre-enrichment prior to laser-induced breakdown spectroscopy for the simultaneous analysis of Cr (III), Cu (II), and Pb (II) in tea infusions. Signal enhancement using AgNPs-MR resulted in amplification with limits of detection of 0.22 µg L-1 for Cr (III), 0.33 µg L-1 for Cu (II), and 1.25 µg L-1 for Pb (II). Quantitative analyses of these ions in infusions of black tea from various brands yielded recoveries ranging from 83.3% to 114.5%. This method is effective as a direct and highly sensitive technique for precisely quantifying trace concentrations of heavy metals in tea infusions.


Assuntos
Cromo , Cobre , Contaminação de Alimentos , Chumbo , Nanopartículas Metálicas , Prata , Chá , Chá/química , Cromo/análise , Chumbo/análise , Prata/química , Nanopartículas Metálicas/química , Cobre/análise , Contaminação de Alimentos/análise , Análise Espectral/métodos , Lasers , Camellia sinensis/química , Metais Pesados/análise , Limite de Detecção
17.
Mikrochim Acta ; 191(5): 246, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38580781

RESUMO

Heavy metal pollution has attracted global attention because of its high toxicity, non-biodegradability, and carcinogenicity. Electrochemical sensors are extensively employed for the detection of low concentrations of heavy metal ions (HMIs). However, their applicability is often limited to the detection of ions that exhibit electrochemical signals exclusively in aqueous solutions. In this study, we proposed a multi-responsive detection platform based on the modification of horseradish peroxidase@zeolitic imidazolate frameworks-8/thionine/gold/ionic liquid-reduced graphene oxide (HRP@ZIF-8/THI/Au/IL-rGO). This platform demonstrated its capability to detect various metal ions, including those without conventional electrochemical signals. The Au/IL-rGO composite structure enhanced the specific surface area available for the reaction. Furthermore, the in situ growth of HRP@ZIF-8 not only shielded the THI signal prior to detection but also protected the electrode material. It was important to note that the introduced edetate disodium dihydrate (EDTA) had the ability to complex with various HMIs. When excess EDTA was present, it could cleave ZIF-8 and release HRP. In the presence of hydrogen peroxide (H2O2), HRP promoted the oxidation of THI previously reduced by the electrode and thus showed excellent sensitivity for HMIs detection. The proposed method overcame the limitation of traditional electrochemical sensors, which solely relied on electrochemical signals for detecting metal ions. This offers a novel approach to enhance electrochemical ion sensing detection.

18.
Front Chem ; 12: 1374898, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516611

RESUMO

It is of great significance to develop a simple and rapid electrochemical sensor for simultaneous determination of heavy metal ions (HMIs) in Baijiu by using new nanomaterials. Here, graphene (GR) was utilized to combine with covalent organic frameworks (COFs) that was synthesized via the aldehyde-amine condensation between 2, 5-dimethoxyterephthalaldehyde (DMTP) and 1, 3, 5-tris(4-aminophenyl) benzene (TAPB) to prepare a new GR/COFDPTB/GCE sensor for electrochemical sensing multiple HMIs. Compared with the glass carbon electrode (GCE), GR/GCE and COFDPTB/GCE, the developed sensor exhibited excellent electrochemical analysis ability for the simultaneous detection of Cd2+, Pb2+, and Cu2+ owing to the synergistically increased the specific surface area, the periodic porous network and plenty of effective binding sites, as well as the enhanced conductivity. Under the optimized experimental parameters, the proposed sensor showed good linearity range of 0.1-25 µM for Cd2+, and both 0.1-11 µM for Pb2+ and Cu2+ with the detection limits of Cd2+, Pb2+, and Cu2+ being 0.011 µM, 8.747 nM, and 6.373 nM, respectively. Besides, the designed sensor was successfully applied to the simultaneous detection of the three HMIs in Baijiu samples, suggesting its good practical application performance and a new method for the rapid detection of HMIs being expended.

19.
Front Cell Infect Microbiol ; 14: 1360880, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529472

RESUMO

Metal ions are essential trace elements for all living organisms and play critical catalytic, structural, and allosteric roles in many enzymes and transcription factors. Mycobacterium tuberculosis (MTB), as an intracellular pathogen, is usually found in host macrophages, where the bacterium can survive and replicate. One of the reasons why Tuberculosis (TB) is so difficult to eradicate is the continuous adaptation of its pathogen. It is capable of adapting to a wide range of harsh environmental stresses, including metal ion toxicity in the host macrophages. Altering the concentration of metal ions is the common host strategy to limit MTB replication and persistence. This review mainly focuses on transcriptional regulatory proteins in MTB that are involved in the regulation of metal ions such as iron, copper and zinc. The aim is to offer novel insights and strategies for screening targets for TB treatment, as well as for the development and design of new therapeutic interventions.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia , Metais/metabolismo , Homeostase/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Íons/metabolismo
20.
Front Chem ; 12: 1353950, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38456182

RESUMO

The incorporation of biologically active metallic elements into nano/micron-scale coatings through micro-arc oxidation (MAO) shows significant potential in enhancing the biological characteristics and functionality of titanium-based materials. By introducing diverse metal ions onto titanium implant surfaces, not only can their antibacterial, anti-inflammatory and corrosion resistance properties be heightened, but it also promotes vascular growth and facilitates the formation of new bone tissue. This review provides a thorough examination of recent advancements in this field, covering the characteristics of commonly used metal ions and their associated preparation parameters. It also highlights the diverse applications of specific metal ions in enhancing osteogenesis, angiogenesis, antibacterial efficacy, anti-inflammatory and corrosion resistance properties of titanium implants. Furthermore, the review discusses challenges faced and future prospects in this promising area of research. In conclusion, the synergistic approach of micro-arc oxidation and metal ion doping demonstrates substantial promise in advancing the effectiveness of biomedical titanium and its alloys, promising improved outcomes in medical implant applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...